
Supercharging DevOps
with GitHub Actions

Partner Solution Architect

Startups & Scaleups

App Innovation & AI

Microsoft

Soham Dasgupta

iamsohamsohamda dasguptasoham

Agenda

• Github

• Triggers, Jobs, Steps

• Actions

• Secrets, Environments

• Runners

• Sharing Workflow

Where the world builds software

100M+
Developers

200M+
Repositories

1,000s
Open-Source

Communities

2.6B+
Contributions / Year

4M+
Organizations

84%
Fortune 500

companies

CI/CD adoption feeds

developer velocity

Source: Developer Velocity: How software excellence fuels
business performance, McKinsey & Company, 2020

Faster time to market

Increased product innovation

Increased customer satisfaction

Faster developer velocity=faster time to market

GitHub Marketplace

● Discover open-source Actions

across multiple domains

● ~15,000 Actions (and

counting...)

● Verified creators
(Publisher domain and email verified)

● Reference these Actions directly

in your workflow

● Integrated into the GitHub editor

7

GitHub Actions –

More than CI/CD

● Generic workflow engine

● Automate everything with

workflows

● 35 events can trigger a workflow

● GitHub Token and Workflow

Permissions

● Community-powered workflows

● Any platform, any language, any

cloud

YAML (Yelling At My

Laptop, again!)

Workflow

Fundamentals

● A text file in your repository
(.github/workflows)

● YAML Ain’t Markup Language

(YAML)

● Events trigger workflows (on:)

● One or multiple jobs

● Executed on a runner

● Contains steps

● A reusable step is action

name: Super Linter workflow

on:

push:

jobs:

lint:

name: Lint Code Base

runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v2

- uses: github/super-linter@v3

env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

 - run: echo “Hello world”

Basic syntax

events

jobs

runner

steps

actions

secrets

./.github/workflows/workflow-file-name.yml

shell

Workflow triggers

Events that triggers workflows

● Trigger:

○ Webhook events

○ Scheduled events

○ Manual event

Events that triggers workflows

Manual events

Events that triggers workflows

Manual events: trigger using the API
(curl, octokit, GitHub CLI)

Jobs and steps

Workflow jobs

● Map – run in parallel by default

● Can be chained using needs keyword

● Runs on a runner in one process

● Contains a sequence of steps

● Steps can be a shell command (run)

or an action (uses)

Workflow steps

• Sequence in a job

• Runs in the same process

/ same directory

• Runs in a shell

Parameter Description

bash

Bash shell. The default shell on all non-Windows

platforms with a fallback to sh. When specified on

Windows, the bash shell included with Git is used.

pwsh PowerShell Core. Default on the Windows platform.

python The python shell. Allows you to run python scripts

cmd Windows only! The windows command prompt.

powershell Windows only! The classical Windows PowerShell.

Actions

● A reusable step

● Lives in a git repo

● Syntax

○ {owner}/{repo}@{ref}

○ {owner}/{repo}/{path}@{ref}

○ ./.github/actions/my-action

● References

○ SHA / Tag / Branch

● Pass variables to Action

○ with:

○ env:

Actions

User docker images as actions

Contexts and expression

syntax

Contexts and expressions syntax

● ${{ <expression> }}

● Context syntax

○ context[‘key’] (if key starts with number or

contains special characters)

○ context.key

● Context

○ matrix

○ github

○ env

○ runner

Contexts and expressions syntax

22

Workflow commands

Workflow commands

● Interact with the workflow from within your steps

● Write command to output (normally using echo)

● Examples

○ set-output

○ error

More advanced syntax elements

Syntax element Description

permissions Set workflow permissions for GITHUB_TOKEN

env Set environment variable for all run steps

defaults Set the shell and working directory for the run

concurrency Manage workflows running concurrently

needs Make job dependent of each other. Share outputs

if Check whether a job should run based on variables. Options are: success() always()

cancelled() failure()

timeout Limit runtime

continue-on-error Handle termination of workflows

container Use a container for the steps execution

services Use a container for the steps execution

Actions

GitHub Actions

● Actions are reusable

● 3 kinds of Actions:

○ Container

○ JavaScript / Typescript

○ Composite Actions

Container Actions

• Dockerfile or existing image

• Inputs

Container Actions

• Dockerfile or existing image

• inputs

JavaScript Actions

Composite Actions

● Just a action.yml file

● Inputs

● Outputs

● Runs

● Design for reusability

● Small and focused (Single

Responsibility Principle)

● Write tests and a test workflow

● Semantic versioning

● Documentation

● Proper action.yml metadata

● github.com/actions/toolkit

● Publish the Action to the marketplace

Writing Actions

Best Practices

https://github.com/actions/toolkit

Actions for CI / CD

Strategy• For-loop – array

• Nested for-loops:

multidimensional array

• Runs for all combinations in all

dimensions

• Fail-fast (yes/no)

• Max 256 parallel jobs

Basic CI workflow

● Uses a build matrix across multiple

node versions

● Runs on the VM

○ Ubuntu in this case

● Actions are composable

● Checkout is separate

● Setup for most languages in

github.com/actions

● npm run by shell

● Artifact upload is a separate action

name: Node CI

on: [push]

jobs:

build:

runs-on: ubuntu-latest

strategy:

matrix:

node-version: [10.x, 12.x]

steps:

- uses: actions/checkout@v2

- name: Use Node.js ${{ matrix.node-version }}

uses: actions/setup-node@v2

with:

node-version: ${{ matrix.node-version }}

- name: Install and test

run: |

npm ci

npm run build --if-present

npm test

- uses: actions/upload-artifact@v2

with:

name: artifact

path: dist/

https://github.com/actions?utf8=%E2%9C%93&q=setup&type=&language=

Optimizing your workflow performance

with caching:

● Temporarily save files between

workflow runs

● 10GB max cache size per repo

● 7 days retention

● Scoped to key and branch

● Never cache sensitive data

Caching dependencies to speed up workflows

Caching can help with speeding up workflows when you need

to install dependencies. NPM, Python, Ruby, etc… these are

simple examples of applications that require dependencies to

be built. But there are more complex scenarios, such as Java,

C/C++ and modularized microservices that often require

downstream artifacts. Caching can speed up your builds when

your dependencies have not changed

Caching

https://github.com/actions/cache

Caching

● Always use setup actions

● Implement caching if (only) needed (cache action)

● Use the matrix strategy to build and test multiple

versions

● Use upload-artifact

● Use the super-linter:

○ github/super-linter:v4

○ github/super-linter:slim-v4

● Use tests and job summaries to display results

● Require status checks for pull requests

CI with Actions

Best Practices

Secrets & variables

GitHub Secret store

● Built-in secret store

● Encrypted

○ LibSodium sealed box

● Use directly from your workflow

● Redacted in workflow logs

● API support

● Organization / repository /

environment level secrets

● Do not use structured data!

● Defined on org, repo, or environment

level

● Secret context

○ ${{ secrets.MY_SECRET }}

○ Set as input (with:) or environment

(env:) for actions

● Set in UI or CLI

○ $ gh secret set MY_SECRET –body “$value”

○ $ gh secret set MY_SECRET –-env Prod

○ $ gh secret set MY_SECRET –-org my-org

● Masked in log

OrganizationOrganization

RepositoryRepository

EnvironmentEnvironment

Secrets

The GITHUB_TOKEN

• ${{ secrets.GITHUB_TOKEN }} or ${{ github.token }}

• Authenticate to GitHub to perform automation inside the workflow’s repo

• Default permission read/write for all scopes (old default) or set to read

The GITHUB_TOKEN

Perform actions as “github-actions”:

● Same setup as secrets, but no redacting

● Defined on org, repo, or environment

level

● vars context

○ ${{ vars.MY_VAR }}

○ Set as input (with:) or environment

(env:) for actions

● Not masked in log

OrganizationOrganization

RepositoryRepository

EnvironmentEnvironment

Variables

Environments

Environments

● Control deployments

● Add gated deployments with

approvals

● Control secrets

● Review all deployments to an env

● Navigate directly to urls for

deployments

● Fully integrated with the checks API

(previously called deployment API)

● Supports matrix for gated

deployments

Environments

● Environments

○ Reviewers / Approvers

○ Wait timer (until 30 days)

○ Branches (→ branch protection!)

○ Deployment branches

○ Secrets

Environments

● Approvals

● Secrets after approval

● Set URL from output

of other job/step

● Progress

Running your workflows

● Receive automatic updates for the

operating system, pre-installed packages

and tools, and the self-hosted runner

application.

● Are managed and maintained by GitHub.

● Provide a clean instance for every job

execution.

● Use free minutes on your GitHub plan,

with per-minute rates applied after

surpassing the free minutes.

● Receive automatic updates for the self-hosted

runner application only. You are responsible

updating the operating system and all other

software.

● Can use cloud services or local machines that

you already pay for.

● Are customizable to your hardware, operating

system, software, and security requirements.

● Don't need to have a clean instance for every

job execution.

● Are free to use with GitHub Actions, but you

are responsible for the cost of maintaining your

runner machines.

Runners

GitHub-hosted Self-hosted

GitHub hosted runners

Linux

Windows

MacOS

Hardware:

• Standard_DS2_v2 virtual machines

in Microsoft Azure

• 2-core CPU

• 7 GB of RAM

• 14 GB of SSD disk space

Hardware:

• 3-core CPU

• 14 GB of RAM

• 14 GB of SSD disk space

Passwordless sudo / UAC disabled Passwordless sudo

Runner Images

Environment YAML label Included Software

Ubuntu 22.04 ubuntu-latest or ubuntu-22.04 ubuntu-22.04

Ubuntu 20.04 ubuntu-20.04 ubuntu-20.04

macOS 11 macos-latest or macos-11 macOS-11

macOS 10.15 macos-10.15 macOS-10.15

Windows Server 2022 windows-latest or windows-2022 windows-2022

Windows Server 2019 windows-2019 windows-2019

Windows Server 2016 windows-2016 windows-2016

https://github.com/actions/runner-images

https://github.com/actions/virtual-environments/blob/main/images/linux/Ubuntu2004-Readme.md
https://github.com/actions/virtual-environments/blob/main/images/linux/Ubuntu1804-Readme.md
https://github.com/actions/virtual-environments/blob/main/images/macos/macos-11-Readme.md
https://github.com/actions/virtual-environments/blob/main/images/macos/macos-10.15-Readme.md
https://github.com/actions/virtual-environments/blob/main/images/win/Windows2022-Readme.md
https://github.com/actions/virtual-environments/blob/main/images/win/Windows2019-Readme.md
https://github.com/actions/virtual-environments/blob/main/images/win/Windows2016-Readme.md
https://github.com/actions/runner-images

GitHub hosted runners
pricing

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions

● Build minutes

○ On Linux $0.008

○ On Windows $0.016 = x2

○ On macOS $0.080 = x10

GitHub edition Storage Minutes Max concurrent jobs

GitHub Free 500 MB 2,000 20 (5 for macOS)

GitHub Pro 1 GB 3,000 40 (5 for macOS)

GitHub Free for

organizations
500 MB 2,000 20 (5 for macOS)

GitHub Team 2 GB 3,000 60 (5 for macOS)

GitHub

Enterprise Cloud
50 GB 50,000 180 (50 for macOS)

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions

Larger runners

https://docs.github.com/en/actions/using-github-hosted-runners/using-larger-runners

https://docs.github.com/en/actions/using-github-hosted-runners/using-larger-runners

Self-hosted runners

● Free

● Any platform (x64: Linux, macOS,

Windows. ARM64 and ARM32 on Linux)

● HTTPS long polling port 443 – 50

seconds

● Can be used to deploy to local

resources

● Can be added at Enterprise,

Organization, and Repository level

Adding self-hosted

runners

● Configure on enterprise / organization /

repository level

● Download and extract the scripts

● Configure and authenticate the runner

with the token

● Start listening for jobs

● For GHES: Blob storage must be

provided (Azure Blob storage, Amazon

S3, MinIO)

Self-hosted runners
Gotchas

● Runners are not ephemeral per default –

you have to clean up after a build yourself

○ $./config.sh --ephemeral

● Use web hooks to auto scale

(github.com/jonico/awesome-runners)

● Do not allow public repositories!

● Limit Actions and use SHA or fork

● Create a company marketplace

(github.com/rajbos/actions-marketplace)

Security with self-

hosted runners

Public repositories with self-hosted

runners pose potential risks:

● Malicious programs running on the

machine

● Escaping the machine’s runner

sandbox

● Exposing access to the machine’s

network

● Persisting unwanted or dangerous

data on the machine

Self-hosted runners and Security

Forked repositories will contain the same Actions

configuration as the parent repository, including the

self-hosted runners. Creates the potential for a fork to

run malicious code on a runner inside your network. For

this reason, it is highly recommended to use self-hosted

runners only with private repositories.

Sharing Workflows

Workflow templates

Workflow templates

● Available in Actions /

New workflow

● Get copied one time

● Starter workflows

Workflow templates

● <org>/.github/workflow-templates

Reusable Workflows

Reusable workflows

Reusable workflow vs Composite action

Reusable workflow:

• Defines the entire job

• Can enforce runner labels

• No option to do something

before and after the steps

Composite action:

• Defines the list of steps

• Full flexibility to do

something before and after

the steps in the composite

action

● Use actions and composite

actions as building blocks

● Use workflow templates and

template repositories for

discoverability

● Use reusable workflows for

complex scenarios

● Share actions and reusable

workflows in internal repositories

Sharing workflows

Best Practices

Thank you

	Default Section
	Slide 1: Supercharging DevOps with GitHub Actions
	Slide 2
	Slide 3: Agenda

	github intro
	Slide 4: Where the world builds software
	Slide 5
	Slide 6: GitHub Marketplace
	Slide 7: GitHub Actions – More than CI/CD
	Slide 8: YAML (Yelling At My Laptop, again!)
	Slide 9: Workflow Fundamentals
	Slide 10: Basic syntax

	Triggers
	Slide 11: Workflow triggers
	Slide 12: Events that triggers workflows
	Slide 13: Events that triggers workflows
	Slide 14: Events that triggers workflows

	Jobs and steps
	Slide 15: Jobs and steps
	Slide 16: Workflow jobs
	Slide 17: Workflow steps
	Slide 18: Actions
	Slide 19: Actions
	Slide 20: Contexts and expression syntax
	Slide 21: Contexts and expressions syntax
	Slide 22: Contexts and expressions syntax
	Slide 23: Workflow commands
	Slide 24: Workflow commands
	Slide 27: More advanced syntax elements

	Actions
	Slide 28: Actions
	Slide 29: GitHub Actions
	Slide 30: Container Actions
	Slide 31: Container Actions
	Slide 32: JavaScript Actions
	Slide 33: Composite Actions
	Slide 37: Writing Actions Best Practices

	Actions for CI/CD
	Slide 38: Actions for CI / CD
	Slide 39: Strategy
	Slide 40: Basic CI workflow
	Slide 42: Caching
	Slide 43: Caching
	Slide 44: CI with Actions Best Practices

	Secrets
	Slide 45: Secrets & variables
	Slide 46: GitHub Secret store
	Slide 47
	Slide 48: The GITHUB_TOKEN
	Slide 49: The GITHUB_TOKEN
	Slide 50

	Environments
	Slide 51: Environments
	Slide 52: Environments
	Slide 53: Environments
	Slide 54: Environments

	Runners
	Slide 61: Running your workflows
	Slide 62: Receive automatic updates for the operating system, pre-installed packages and tools, and the self-hosted runner application. Are managed and maintained by GitHub. Provide a clean instance for every job execution. Use free minutes on your GitHub
	Slide 63: GitHub hosted runners
	Slide 64: Runner Images
	Slide 65: GitHub hosted runners pricing
	Slide 66: Larger runners
	Slide 68: Self-hosted runners
	Slide 70: Adding self-hosted runners
	Slide 71: Self-hosted runners Gotchas
	Slide 72: Security with self-hosted runners

	Workflow templates
	Slide 73: Sharing Workflows
	Slide 74: Workflow templates
	Slide 75: Workflow templates
	Slide 76: Workflow templates
	Slide 77: Reusable Workflows
	Slide 78: Reusable workflows
	Slide 79: Reusable workflow vs Composite action
	Slide 80: Sharing workflows Best Practices
	Slide 81: Thank you

